Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
2024
Alexandra
Pusta
-
UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU"
Researcher | Teaching staff
Personal public profile link.
Expertise & keywords
Electrochemistry
Bioelectrochemistry
Electrochemical biosensors
Targeted drug delivery
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Aptamer-based technology for therapy and diagnostic approaches in liver cancer
Call name:
P 5.1 - Proiecte de Cercetare Exploratorie - Competiția 2023
PN-IV-P1-PCE-2023-1104
2025
-
2027
Role in this project:
Coordinating institution:
UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU" Cluj-Napoca
Project partners:
UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU" Cluj-Napoca (RO)
Affiliation:
UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU" Cluj-Napoca (RO)
Project website:
Abstract:
Aptamers are short, single-stranded DNA or RNA sequences, obtained through the process called Systematic Evolution of Ligands by Exponential Enrichment (SELEX) and through specific 3-D structures can bind a wide range of target molecules with high affinity and specificity. Aptamers are promising tools for the development of devices for the sensing of specific molecules and targeted drug delivery, they have been recently reported for the diagnosis and treatment of viral, neurodegenerative diseases and cancers. Among cancers, hepatocellular carcinoma (HCC) is of great concern due to its increasing incidence, low sensitivity of the screening methods and resistance to conventional chemotherapy. The incidence of liver cancer in Romania was significantly higher than the European average, making Romania the country with the second–highest incidence of HCC in Europe. The element of originality of the proposed project consists in the development of novel aptamers specific for different HCC biomarkers and their integration in electrochemical aptasensors and nanodevices for targeted drug delivery. The combination of an active targeting element (the aptamer) and a nanorobot delivery strategy based on either magnetic NPs guided by an external magnetic field or by pH-responsive NPs is a highly innovative approach of the HepApTech project, applied for targeted delivery of sorafenib or lenvatinib on real samples. Methods for the targeted delivery of lenvatinib have not been reported so far.
Read more
Wearable electrochemical sensors for the non-invasive detection of inflammatory mediators expressed in post-COVID-19 condition
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente - TE-2021
PN-III-P1-1.1-TE-2021-1543
2022
-
2024
Role in this project:
Coordinating institution:
UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU"
Project partners:
UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU" (RO)
Affiliation:
UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU" (RO)
Project website:
https://wear-4-postcovaid.wixsite.com/wearable
Abstract:
Post-COVID-19 condition is characterized by a wide range of symptoms that may last more than 24 weeks after the onset of the infection, with high socio-economic impact. According to WHO, research on predictors for post-COVID-19 condition is of paramount importance to provide new strategies for minimizing SARS-CoV-2 post-infection consequences. The theme of WEAR-4-postCOVaID is very important, aiming for the validation of a panel of different types of biomarkers: interleukin 6, tumour necrosis factor-α, cortisol and kynurenic acid that can be used to early predict medical complications and to monitor patients’ rehabilitation after SARS-CoV-2 infection. The purpose of WEAR-4-postCOVaID is to develop a device for the rapid detection of biomarkers expressed in post-COVID-19 syndrome as a tool for medical staff for easier diagnosis and monitoring of patients. Deepening the knowledge about post-COVID-19 condition (1) and finding the interconnection between biomarkers levels in different body fluids and the main symptoms of this medical condition (2) are the goals of the project with specific and interconnected objectives. The originality of the project consists in the elaboration of innovative electrochemical sensors for the salivary detection of the four biomarkers, the correlation between the levels of the biomarkers (IL-6 and cortisol) in saliva and sweat, and the development of a dual wearable sensor for monitoring their levels in sweat with biomedical applications.
Read more
Electrochemical detection of bacterial quorum sensing molecules and biofilm formation
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2019-1360
2020
-
2022
Role in this project:
Coordinating institution:
UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU"
Project partners:
UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU" (RO)
Affiliation:
Project website:
https://sites.google.com/view/quorel-sens/home
Abstract:
Quorum sensing (QS) plays an important role in the pathogenesis of certain bacteria due to its involvement in virulence factors synthesis and formation of the biofilm, which is resistant to the immune system and to antibiotics. QS is a form of cell to cell communication between bacteria using substances called autoinducers, such as N-acyl derivatives of homoserine lactone (HSLs) or cyclic dimeric guanosine monophosphate (c-di-GMP), the latter being involved in biofilm formation.
The main purpose of this project consists in facilitating the fast identification of nosocomial infections and their proper antibiotic treatment, by electrochemical detection of molecules involved in QS and biofilm formation from microbiological cultures and different biological samples.
The QUOREL-SENS project includes several goals: development of a global strategy for obtaining electrochemical biomimetic sensors capable of (1) selective and sensitive detection of QS in P. aeruginosa, (2) of the biofilm formed by P. aeruginosa, and of (3) simultaneous electrochemical evaluation of the concentration of QS molecules or biofilm formation and the concentration of different antibiotics.
The envisioned goals will be achieved by two different, interconnected strategies, with specific objectives: (1) modification of the electrodes with molecularly imprinted polymers (improving the selectivity) and with nanomaterials (improving the electrochemical properties and the sensitivity) for the detection of HSLs and of c-di-GMP produced by P. aeruginosa; (2) development of electrochemical aptasensors for the detection of HSLs and of c-di-GMP; (3) evaluation of the concentration of molecules involved in QS or biofilm formation in the presence of different antibiotics, their concentration being detected electrochemically before and after exposure to antibiotics; (4) complete characterization of the developed electrochemical sensors and their adaptation for real samples analysis.
Read more
High accuracy innovative approach for the robotic assisted intraoperatory treatment of hepatic tumors based on imagistic-molecular diagnosis
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0221
2018
-
2021
Role in this project:
Coordinating institution:
UNIVERSITATEA TEHNICA DIN CLUJ - NAPOCA
Project partners:
UNIVERSITATEA TEHNICA DIN CLUJ - NAPOCA (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "IULIU HATIEGANU" (RO); INSTITUTUL DE MECANICA SOLIDELOR (RO); INSTITUTUL REGIONAL DE GASTROENTEROLOGIE - HEPATOLOGIE PROF. DR. OCTAVIAN FODOR CLUJ-NAPOCA (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU OPTOELECTRONICA INOE 2000 INCD (RO)
Affiliation:
Project website:
https://cester.utcluj.ro/improve/home
Abstract:
The IMPROVE project will be developed by a transdisciplinary group, which integrates the knowledge of multiple specialists from the technical field (such as mechanical engineers, computer science engineers and material sciences engineers), a team of medical doctors (surgeons, gastroenterologists, oncologists, and radiologists), and a team of chemical scientists. The IMPROVE group will develop an innovative solution for the treatment of the patients diagnosed with non resectable hepatic tumors, based on a novel robotic system, and an novel medical imaging diagnostic tool. The majority of the hepatic tumors are not resectable due to a variety of factors such as tumor placement, size, and the patient general condition. In order to deliver a better palliative care towards the patient, and a better quality of life, the IMPROVE project proposes an integrated system to deliver treatment in the form of brachytherapy or chemotherapy. The treatment will be delivered in a minimally invasive manner, guided by a robot (which delivers the treatment agent through needles), based with a non-invasive diagnostic method. The diagnosis stage consists of the development of “smart” image analysis algorithms which can detect and define some hepatic diseases such as cancers. The preplanning stage will define the treatment method as well as the needle trajectories. For the treatment delivery a robotic structure will be developed to help the clinicians in the minimally invasive (laparoscopic) in situ procedure. The treatment agent (brachytherapy of chemotherapy) will be precisely delivered within the tumor using specialized instruments (for needle insertion and delivery) guided by the robotic system. The IMPROVE team is composed out of experienced researchers whit excellent results in the medical field, and well based former collaborations. The group synergy represents a key factor in obtaining positive results in the survival outcome of the hepatic cancer patients.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.8533, O: 160]