Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
Alexandru
Mihai
Assistent Researcher
-
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Researcher | PhD student
5
years
Web of Science ResearcherID:
FZG-9326-2022
Personal public profile link.
Curriculum Vitae (20/09/2021)
Expertise & keywords
Chemistry
Projects
Publications & Patents
Entrepreneurship
Reviewer section
3D laser printed absorbable scaffolds with a prolonged biomechanical stability in human body fluids.
Call name:
P 4 - Proiecte de Cercetare Exploratorie, 2020
PN-III-P4-ID-PCE-2020-0992
2021
-
2023
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Project partners:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Affiliation:
Project website:
https://www.icf.ro/pr_2020/PCE-234-2021/index.html
Abstract:
Novel biomaterials for temporary orthopedic implants are one of the most challenging areas of exploratory research in advanced materials. Third generation biomaterials are designed to be both resorbable and bioactive, that is, the implant will be temporary, and once implanted, it will help the body heal itself. The aim of this project is to progress toward a novel absorbable scaffold biomaterial for temporary orthopedic implants, through hierarchically structured surfaces that protect the scaffold, effective to convey higher corrosion tolerance and increased scaffold strength retention for extended periods in body fluids while at the same time capable to stimulate human osteoblast cell proliferation behavior. Specific objectives are (i) the design and fabrication of 3D printed scaffold structures with biocompatible elements by rapid solidification from melt through laser additive manufacturing-3D printing; (ii) the development of original cost-effective surface modification procedures for surface protected scaffolds (SPS) with enhanced corrosion tolerance and bioactivity; (iii) the determination of bare and SPS corrosion rates and corrosion mechanisms in human physiological fluids of pH and chloride concentrations reproducing the most exigent conditions for implant use; and (iv) the assessment of the scaffold-cell constructs to initiate tissue repair processes and osteogenesis; contributing to Romanian research with: 1 patent, 4 scientific articles, 6 conference presentations
Read more
Ternary alloy with antibacterial properties and non-toxic alloying elements for various implants.
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2019-1054
2020
-
2022
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Project partners:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
https://www.icf.ro/pr_2019/ZIRTAAG/Zirtaag.html
Abstract:
The project seeks to promote young researchers or future researchers that are eager to improve the quality of life by creating and testing out new non-toxic alloys with antibacterial properties. Through theoretical modelling and utilizing modern casting techniques we will obtain an alloy that has superior properties and lower costs than existing ones and that can be used for orthopedic and dental implants alike. The alloy is to be subjected to specific electrochemichal and corrosion tests and also in-vitro cell growth tests. Surface analysis wil be made using modern techniques such as SEM, XPS and AFM.
Read more
SOFT INTERACTIONS IN POLYMER AND HYBRID HYDROGELS INVESTIGATED BY ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY
Call name:
P 4 - Proiecte de Cercetare Exploratorie
PN-III-P4-ID-PCE-2016-0734
2017
-
2019
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Project partners:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
http://www.icf.ro/pr_2017/CTR_86-2017/index.html
Abstract:
The project aim is to approach structural aspects of polysaccharide hydrogels with self-healing properties or represented by interpenetrating polymer networks (IPN) using electron paramagnetic resonance (EPR) spectroscopy. This is a physico-chemical method that provides highly specific local information on the environment around the paramagnetic species in a range of several nanometers. As polysaccharides are diamagnetic, spin labelling will be a necessary step in studying these hydrogels by EPR, in order to obtain information that can be further exploited in tailoring the properties of a particular hydrogel.
The major goals of this project are: 1) to get insight into the formation of hydrogels resulted through noncovalent assembly of polysaccharides, and 2) to analyse gel properties and some processes, taking place inside the hydrogel network, which can generate hybrid materials, all these in connection with their possible applications. The goals will be pursued by following five research objectives:
O1. Design of spin labelled self-healing hydrogels based on host-guest interactions
O2. Design of interpenetrating polymer network (IPN) hydrogels involving polysaccharides and the study of their behaviour by EPR spectroscopy
O3. Exploration of mesh size using EPR measurements and distribution of spin probes in the non-homogeneous systems represented by polysaccharide hydrogels
O4. Obtaining hybrid materials represented by self-healing and IPN polysaccharide hydrogels and inorganic nanoparticles
O5. Investigation of processes occurring in alginate/hyaluronic acid hydrogels embedded with riboflavin and irradiated with UVA light
Although the main technique will be EPR spectroscopy, the research will involve additional investigations and characterization by other techniques like porosimetry, electron microscopy, thermal analysis, rheology, fluorescence and IR spectroscopy, all readily available in our institute.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.4598, O: 144]