Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
2014
Mr.
Constantin Claudiu
Ciobotaru
Scientific Researcher III
Scientific Researcher III
-
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Researcher
10
years
Web of Science ResearcherID:
G-9954-2019
Personal public profile link.
Curriculum Vitae (18/07/2023)
Expertise & keywords
OLED
Sputtering
Organometallic
Polymers
Synthesis
OLED
Devices
Film depositions
Polymers
Organometallic
Carbon nanotube
Graphene
graphene oxide
Polymers
Nanocomposites
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Highly conductive and transparent metallic electrodes for Organic Light-Emitting Diodes
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2021-0828
2022
-
2024
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
Project website:
https://infim.ro/project/electrozi-metalici-transparenti-si-conductori-pentru-diode-organice-electroluminescente/
Abstract:
The project describes fabricating transparent metallic electrodes (TCE) for Organic Light Emitted Diodes technologies, which enable increasing the charge transport across the OLED sandwich structures and increasing the light output through double side electroluminescence. Furthermore, as a novelty, applying a patent based on low-energy electron irradiation for metallic surfaces will facilitate the obtaining transparent anodes with higher electrical conductivity through the decrease in roughness, using nanozonal heating of metallic thin films under the electron beam. Concerning the transparent cathodes, the project develops a new strategy for the low work function electrodes obtained for alloys between an alkali earth metal (magnesium) with the more stable silver metal. The optimisation of Ag-Mg alloys as cathodes with uniform distribution and optimal Ag/Mg ratio represents the second challenge of this current project. This fact implies obtaining suitable quality alloy thin films using the thermal co-evaporation technique with two evaporation sources, which is compared with the thermionic vacuum arc deposition technique.
Read more
Flexible organic light emitting diode on bacterial cellulose substrate with transparent electrospun web anode.
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-1459
2020
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE CHIMICO - FARMACEUTICA - I.C.C.F. BUCURESTI (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
https://infim.ro/en/project/flexible-organic-light-emitting-diode-on-bacterial-cellulose-substrate-with-transparent-electrospun-web-anode/
Abstract:
The project brings together three new technologies: a) the using of modified bacterial cellulose for FLOEDs substrates by improving the transparency and mechanical properties. This type of technology covers the flexibility class of materials in which the glass substrates are removed from the future electroluminescent diodes. Besides this aspect, the future of the FOLEDs opens new perspectives in the optoelectronic area; b) applying the electrospun web technology for the FOLEDs anodes to increase the light output of these devices. The appliance of this technology will offer an alternative of the brittle and expensive indium tin oxide, allowing the improvement of the rolling technologies for the displaying and lightening domain; c) integrating of the new organometallic compound with dual electroluminescence as emissive layer and comparison with the commercial one. The strategy consists of using a freestanding sandwich structure with successively deposited organic layers onto a transparent electrospun metallic web as an anode. Thus, this structure will be easily attached to the glass and BC composite membrane by thermal transfer to obtain either OLEDs and FOLEDs devices. A comparison between the luminance of the FOLEDs and OLEDs will be performed related to the transparency of the BC substrate and electrospun web anode. The level of the involved technologies will be tested and validated in laboratory conditions as a functional system while the performances will be highlighted in comparison with classical technologies.
Read more
NEW METHODS OF DIAGNOSIS AND TREATMENT: CURRENT CHALLENGES AND TECHNOLOGIC SOLUTIONS BASED ON NANOMATERIALS AND BIOMATERIALS
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0062
2018
-
2021
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA
Project partners:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO); INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE IN DOMENIUL PATOLOGIEI SI STIINTELOR BIOMEDICALE "VICTOR BABES" (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "CAROL DAVILA" (RO); UNIVERSITATEA DE MEDICINA SI FARMACIE "GRIGORE T. POPA" DIN IAŞI (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE CHIMICO - FARMACEUTICA - I.C.C.F. BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU TEHNOLOGII IZOTOPICE SI MOLECULARE I N C D T I M (RO); UNIVERSITATEA TRANSILVANIA BRASOV (RO)
Affiliation:
INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Project website:
http://infim.ro/en/project/sanomat/
Abstract:
The project will develop novel conceptual and functional solutions of biomedical devices for treatment, reinforcement/repair/replacement (of human tissues) and diagnosis based on nanostructured and/or biocompatible materials, with high attractivity and certain potential for technology transfer to industry. The experience of the interdisciplinary consortium will allow a passage from concepts of nanomaterials and biomaterials with extended and/or complementary functional features to implementation to new biomedical applications of great interest: (i) antitumoral therapeutic systems (by localized magnetic hyperthermia, photodynamic therapy and drug delivery); (ii) biocompatible compounds with enhanced antimicrobial efficacy; (iii) stent or vein/arterial filters implants based on ferromagnetic shape-memory alloys (with the advantage of repositioning without the need of new invasive interventions); (iv) personalized bone regenerative implants (i.e. porous ceramic scaffolds for bone tissue engineering; dental implants with rapid osseointegration); (v) (bio)sensors for monitoring the bioavailability of pharmaceutical compounds and detecting the reactive oxygen species and their biologic effect; and (vi) correlation of physico-chemical properties with clinical investigations for two types of aerosols (salt particles and essential oils), and their prospective coupling with possible synergistic effects. The synergic development of the institutional capacity of the project partners will be achieved by: creating new jobs and purchasing new equipment and software, providing technical/scientific assistance to the emerging institutions, initiating and fostering collaborations with partners from industry in view of technology transfer, and increasing the international visibility of the involved institutions by capitalizing on the obtained research results. The project will create the core of the first national cluster in the field of healthcare technologies.
Read more
DRUG DELIVERY HYBRIDS BASED ON POLYMERS AND POROUS CLAY HETEROSTRUCTURES
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-1432
2012
-
2016
Role in this project:
Coordinating institution:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI
Project partners:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); CENTRUL DE CERCETARE SI PRELUCRARE A PLANTELOR MEDICINALE PLANTAVOREL SA (RO); METAV - CERCETARE DEZVOLTARE S.R.L. (RO)
Affiliation:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Project website:
http://www.tsocm.pub.ro/cercetare/DELPOCLAY
Abstract:
The research project is focused on the synthesis of new hybrid materials based on polymers and various organophylized porous clay heterostructures designed for controlled delivery of drugs which exhibit a low water solubility and high toxicity.
Read more
DUAL EMITTERS FOR DISPLAYS BASED ON OLED COMPOUNDS
Call name:
Exploratory Research Projects - PCE-2011 call
PN-II-ID-PCE-2011-3-0620
2011
-
2016
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Fizica Materialelor (RO)
Project website:
http://www.infim.ro/NationalProjects/idei78_2011/
Abstract:
The main goal of this project is an improvement in OLED technology through a series of elements that leads to a greater stability of OLED’s, eliminating the molecular aggregation phenomena, increasing the lifetime of displays and controlling the charge carriers injection through the following innovations: a) the synthesis of organometallic compounds with dual emission (red and green), b) changing the anode structure by adding ZnO nanowires over the ITO layer, c) the inclusion in the emissive layer of magnetic nanoparticles that leads to an increasing of electroluminescence efficiency by controlling the charge carriers in the OLED device. The nanoparticles acts as traps for the charge carriers. These traps balances the currents of holes and electrons, resulting in an increase of the critical voltage and a significant enhancement of electroluminescence quantum efficiency. The effect of an external magnetic field is to align the spins of magnetic nanoparticles, which increases the fraction of singlets and thus the quantum efficiency via a spin-polarized charge transfer process. The dual emission will be obtained in organometallic compounds with two types of ligands and the ZnO nanowires can be obtained by electrochemical deposition.
A decrease of applied voltages to the OLED devices will be expected.
Read more
Innovative polyester/bacterial cellulose composites for biomedical engineering
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-1002
2012
-
2016
Role in this project:
Coordinating institution:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI
Project partners:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE CHIMICO - FARMACEUTICA - I.C.C.F. BUCURESTI (RO); Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); I.C.P.E. BISTRITA S.A. (RO)
Affiliation:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Project website:
http://www.tsocm.pub.ro/cercetare/POLYBAC
Abstract:
The project entitled “INNOVATIVE POLYESTER/BACTERIAL CELLULOSE COMPOSITES FOR BIOMEDICAL ENGINEERING”, acronym POLYBAC focuses on the development of new composite materials based on polyhydroxyalkanoates and bacterial cellulose with biomedical applications.
One major major objective consists in the synthesis and characterization of functionalized naturally-occuring biodegradable polyhydroxyalkanoates (PHAs) and bacterial cellulose (BC) composites for bone tissue repairs.
The second major objective refers to the synthesis and characterization of polyhydroxyalkanoates and bacterial cellulose composite materials for blood vessel engineering.
The development of innovative composite materials for bone pathology is a very interesting and challenge task with interdisciplinary view involving polymer science, organic chemistry, physics, biology and medicine.
These composite materials should be biocompatible with the living tissue and should provide minimum inflammatory or cytotoxic reactions. In vitro and in vivo tests will show the capacity of this material to come into contact with the living tissue inducing or not a toxic or immunologic response at the level of the entire organism.
At industrial scale, we intend to develop plates and sheets by pressing and milling process, tubes by extrusion and various injected parts that meet the essential conditions according to Directive 93/42 EEC concerning medical devices (including European Pharmacopoeia).
Read more
Eco-friendly food packaging from last generation multifunctional bioplastics
Call name:
Joint Applied Research Projects - PCCA-2011 call, Type 2
PN-II-PT-PCCA-2011-3.2-1569
2012
-
2016
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); METAV - CERCETARE DEZVOLTARE S.R.L. (RO); INSTITUTUL DE CERCETARI PRODUSE AUXILIARE ORGANICE S.A. (RO)
Affiliation:
UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO)
Project website:
http://www.bio-multi-pack.icechim.ro
Abstract:
The project proposes to carry out a technology for obtaining multifunctional materials based on last generation of biopolymers and bioadditives melt processable into catering food packaging. These packages will comply with the food safety conditions and will have physical – mechanical properties proper to the plastic products that are generally of commodity nature. The national and international novelty and added value of the project is determined by the originality of the propose new conceptual models for realising of new materials with improved thermal stability, small hygroscopicity, melt processable into catering food packaging. The elaboration of new solutions needs inter and transdisciplinary knowledge of chemistry, physics, physics and chemistry of polymers, mathematical statistics, process engineering, scale up and economics. The new technology has a great applicative potential and can be applied on the same industrial platform or on different platforms. All the novelty solutions will be disseminated and will be patented. At present on the Romanian market one can find only packaging made from imported oxobiodegradable pellets which has limited biodegradability. The realising according to the proposed new technology products which in nature will be totally destroyed in a very short time, would turn into the advantaje of beeing the only supplier, on the Romanian market for totally biodegradable products. The technology can be internationally applied by country with the same envoiroment problems as Ramania. The project consortium is formed from 4 partners: ICECHIM (CO), Politehnica University Bucharest (P1), SC Metav CD –SA (P2) and SC ICPAO SA (P3) with complementary expertise. The project manager is doctor and fulfill the eligibility conditions. P1 and P2 has project responsable that are doctors. Because of the great interest for the proposed subject P3 co–funded with 25 % from the entire project fund.
Read more
NEW CONCEPTS AND STRATEGIES FOR THE DEVELOPMENT OF KNOWLEDGE OF NEW BIOCOMPATIBLE STRUCTURES IN BIOENGINEERING
Call name:
Complex Exploratory Research Projects - PCCE-2008 call
PN-II-ID-PCCE-2008-0248
2010
-
2013
Role in this project:
Coordinating institution:
UNIVERSITATEA DIN BUCURESTI-DEPARTAMENTUL DE BIOCHMIE SI BIOLOGIE MOLECULARA
Project partners:
UNIVERSITATEA DIN BUCURESTI-DEPARTAMENTUL DE BIOCHMIE SI BIOLOGIE MOLECULARA (RO); INSTITUTUL DE BIOLOGIE SI PATOLOGIE CELULARA NICOLAE SIMIONESCU-LABORATORUL DE CELULE STEM SI TERAPIE CELULARA (RO); UNIVERSITATEA POLITEHNICA BUCURESTI-FACULTATEA DE CHIMIE APLICATA SI STIINTA MATERIALELOR (RO); UNIVERSITATEA POLITEHNICA BUCURESTI-CENTRUL NATIONAL DE CONSULTANTA PENTRU PROTECTIA MEDIULUI (RO); INSTITUTUL DE CHIMIE FIZICA ILIE MURGULESCU (RO); UNIVERSITATEA BABES-BOLYAI CLUJ-NAPOCA, CENTRUL DE BIOMATERIALE, INSTITUTUL DE CERCETARI EXPERIMENTALE SI INTERDISCIPLINARE (RO); INSTITUTUL DE CERCETARE-DEZVOLTARE PENTRU CHIMIE SI PETROCHIMIE BUCURESTI (RO)
Affiliation:
UNIVERSITATEA POLITEHNICA BUCURESTI-FACULTATEA DE CHIMIE APLICATA SI STIINTA MATERIALELOR (RO)
Project website:
http://www.pcce248.weebly.com
Abstract:
IN TISSUE ENGINEERING (TE) THE COMBINED KNOWLEDGE FROM BIOLOGY AND ENGINEERING
IS DIRECTED TOWARDS THE POSSIBILITY TO RESTORE LOST OR DAMAGED TISSUE. THE
GENERAL AIM OF THIS PROJECT IS TO CONSOLIDATE A CROSS-DISCIPLINARY TEAM OF
COLLABORATING INVESTIGATORS TO CARRY OUT SOME CELL-SUPPORT CONSTRUCTS (CSC)
WITH POSSIBLE APPLICATIONS IN REGENERATION/REPAIR OF SOFT AND HARD TISSUES AND IT
DOES NOT ASSUME PRE-CLINICAL AND CLINICAL TRIALS. THIS APPLICATION CONTAINS THREE
SPECIFIC OBJECTIVES: 1- OBTAINMENT OF NEW SUPPORT 3-D STRUCTURES DESIGNED TO
CULTIVATE OSTEOBLASTS AND HUMAN MESENCHYMAL STEM CELLS (HMSC) TO OBTAIN CSCS
WITH CHARACTERIZED ARCHITECTURE AND MECHANICAL PROPERTIES, USEFUL IN BONE TISSUE
ENGINEERING; 2 - DEVELOPMENT OF REGENERATION STRATEGIES OF ADIPOSE TISSUE BY
IMPLANTATION OF PREADIPOCYTES IN 3-D HYDROGEL SCAFFOLDS, THAT MIMIC
EXTRACELLULAR MATRIX, DESTINED TO THE RECONSTRUCTION OF SOFT TISSUE DEFECTS
(SEVERE TRAUMAS, DEEP BURNS OR TUMOR RESECTIONS) AND 3 - STUDY OF THE EFFECTS OF 3-
D CULTURE AND GROWTH FACTORS ON THE CHONDROGENIC DIFFERENTIATION OF HMSC CELLS
TO OBTAIN SOME INVESTIGATION MODELS OF THEIR POTENTIAL IN CARTILAGE TISSUE
REGENERATION. THE PROJECT PRESENTS VIABILITY, INNOVATION, COMPLEXITY AND
INTERDISCIPLINARY EXCHANGE BECAUSE: 1 - IT IS A CONSORTIUM WHICH CONSISTS FROM
PARTNERS WITH COMPLEMENTALLY COMPETENCES WHO ENGAGE TO ACT AS A UNITY IN THE
FOLLOWING FIELDS: CELLULAR AND MOLECULAR BIOLOGY, CHEMISTRY AND PHYSICS OF
MATERIALS, ENGINEERING SCIENCES – IN ORDER TO GET ALL OBJECTIVES; 2 - THE PARTNERS
ARE STAFFS WITH A GOOD, STRONG REPUTATION ON THEIR FIELD, AND THEY HAVE THE
NECESSARY MANAGERIAL EXPERIENCE AS WELL AS THE HUMAN RESOURCES AND PERFORMING
EQUIPMENTS AND 3 - THE PARTNERSHIP WAS PARTIALLY CONSOLIDATED DURING PREVIOUS
COLLABORATIONS AND WHICH SUSTAIN IT. ACCOMPLISHMENT OF THE OBJECTIVES OF THIS
PROJECT CONSTITUTES A SCIENTIFIC CHALLENGE FOR ANY SCIENTIFIC TEAM AROUND THE
WORLD.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.6122, O: 247]