Log In
Sign Up
Romania
Citizenship:
Romania
Ph.D. degree award:
2006
Mr.
Cristian
Bereanu
Professor
Professor
-
UNIVERSITATEA BUCURESTI
Other affiliations
Researcher
-
INSTITUTUL DE MATEMATICA "SIMION STOILOW" AL ACADEMIEI ROMANE
(
Romania
)
Researcher | Teaching staff | Scientific reviewer
Personal public profile link.
Curriculum Vitae (14/06/2020)
Expertise & keywords
Boundary value problems
Critical point theory
Lower and upper solutions
Minimax theorems
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Analysis of Schrödinger equations
Call name:
Projects for Young Research Teams - RUTE -2014 call
PN-II-RU-TE-2014-4-0007
2015
-
2017
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL DE MATEMATICA "SIMION STOILOW" AL ACADEMIEI ROMANE
Project partners:
INSTITUTUL DE MATEMATICA "SIMION STOILOW" AL ACADEMIEI ROMANE (RO)
Affiliation:
INSTITUTUL DE MATEMATICA "SIMION STOILOW" AL ACADEMIEI ROMANE (RO)
Project website:
https://sites.google.com/site/liviuignat/projects/grant-te2015-2017
Abstract:
In this project we consider deterministic and stochastic Schrödinger equations on metric graphs. By using fine tools from harmonic analysis and stochastic analysis we study the dispersion property in terms of the topology of the considered structure. We analyze the well-posedness of nonlinear models and study some of their qualitative properties: long time behavior, solitons, waves propagation, blow-up, scattering. We investigate the influence of the graph topology on the behavior of the solutions, the existence of maximizers for Strichartz –like estimates and the way they depend on the topology. Discrete models of the above equations will be considered both from the numerical as the theoretical point of view.
Read more
Critical point theory and degree theory for nonlinear problems with relativistic Laplacians
Call name:
Projects for Young Research Teams - TE-2011 call
PN-II-RU-TE-2011-3-0157
2011
-
2014
Role in this project:
Project coordinator
Coordinating institution:
Institutul de Matematica Simion Stoilow al Academiei Romane
Project partners:
Institutul de Matematica Simion Stoilow al Academiei Romane (RO)
Affiliation:
Institutul de Matematica Simion Stoilow al Academiei Romane (RO)
Project website:
http://sites.google.com/site/bereanucristian/grant-te-2011-2014
Abstract:
In this project, together with my team (Prof. dr. Petru Jebelean, C.S. III Liviu Ignat, Dr. Madalina Petcu from Poitiers, Dr. Nicusor Costea, PhD student Calin Serban), we will study some boundary value problems with relativistic Laplacians. Our main tools are semismooth critical point theory and degree theory. In particular we will study the multiplicity of periodic solutions for periodic perturbations of the relativistic vector Laplacians, multiplicity of solutions near resonance and nonlinear perturbations of the discrete relativistic Laplacian.
Read more
Qualitative properties of partial differential equations and their numerical approximations
Call name:
Projects for Young Research Teams - TE-2010 call
PN-II-RU-TE-2010-0004
2010
-
2013
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL DE MATEMATICA SIMION STOILOV DIN BUCURESTI AL ACADEMIEI ROMANE
Project partners:
INSTITUTUL DE MATEMATICA SIMION STOILOV DIN BUCURESTI AL ACADEMIEI ROMANE (RO)
Affiliation:
INSTITUTUL DE MATEMATICA SIMION STOILOV DIN BUCURESTI AL ACADEMIEI ROMANE (RO)
Project website:
https://sites.google.com/site/liviuignat/projects/grant-cncsis-te
Abstract:
Acest proiect este dedicat studiului unor ecuatii cu derivate partiale din punctul de vedere al existentei si unicitatii solutiilor, al aproximarii numerice si al comportamentului asimptotic. Mai precis, vom analiza urmatoarele probleme:
1. Aproximari numerice pentru ecuatii dispersive. Stabilim pana la ce punct schemele numerice clasice (sau variante ale acestora ce vor fi introduse de-a lungul proiectului) verifica proprietatile de dispersivitate uniforme in raport cu pasul de discretizare. Acestea sunt importante pentru demonstrarea convergentei schemelor numerice in problemele neliniare asociate.
2. Proprietati asimptotice pentru ecuatii cu difuzie nelocala. Dorim sa analizam descresterea solutiilor si profilul lor cand timpul tinde la infinit. Realizam atat o analiza teoretica cat si numerica.
3. Ecuatii pe retele. Vom considera ecuatii de tip Schrodinger (continue sau discrete) pe retele descrise de un arbor sau graf. Suntem interesati sa obtinem comportamentul asimptotic al solutiilor precum si rezultate de buna punere pentru probleme neliniare.
Read more
GENIL grant YTR-2011-7
Call name:
2011
-
2012
Role in this project:
Partner team leader
Coordinating institution:
University of Granada
Project partners:
University of Granada ()
Affiliation:
University of Granada ()
Project website:
Abstract:
Read more
Call name:
Premierea obtinerii atestatului de abilitare
PN-II-RU-ABIL-2014-1-0019
2014
-
Role in this project:
Coordinating institution:
INSTITUTUL DE MATEMATICA "SIMION STOILOW" AL ACADEMIEI ROMANE
Project partners:
INSTITUTUL DE MATEMATICA "SIMION STOILOW" AL ACADEMIEI ROMANE (RO)
Affiliation:
INSTITUTUL DE MATEMATICA "SIMION STOILOW" AL ACADEMIEI ROMANE (RO)
Project website:
Abstract:
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Download (20.61 kb) 14/06/2020
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.5555, O: 185]