Log In
Sign Up
Romania
Citizenship:
Romania
Ph.D. degree award:
Not applicable
Mr.
Grigore-Mihăiță
Stan
PhD Candidate
Scientific Researcher - Bioinformatics Platform
-
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE MEDICO-MILITARA „CANTACUZINO”
Other affiliations
University Teaching Assistant
-
UNIVERSITATEA BUCURESTI
(
Romania
)
Researcher | Teaching staff | PhD student
Biologist concerned with computational biology. My interests focus on dry lab in particular: computational genomics, bash and R scripting, in silico simulations. Hardworking, honest and passionate about continuous development.
4
years
Personal public profile link.
Curriculum Vitae (13/12/2023)
Expertise & keywords
Computational genomics
Bash Programming
Bioinformatics
R programming
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Integrated use of the next generation plant biostimulants for an enhanced sustainability of field vegetable high residue farming systems
Call name:
EEA Grants - Proiecte Colaborative de Cercetare
RO-NO-2019-0540
2020
-
2024
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); Norwegian Institute for Water Research (NO); INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO); Norgenotech AS (NO); ENPRO SOCTECH COM SRL (RO); AMIA INTERNATIONAL IMPORT EXPORT S.R.L. (RO)
Affiliation:
Project website:
https://icechim.ro/project/stim4plus-en/
Abstract:
The project addresses mainly the thematic area of Biotechnology, more exactly the key topic Biotechnology for agriculture, aquaculture, forestry and biomass production. The biotechnological solutions which STIM4+ project proposes to develop are intended to compensate the negative effects of the low-input, high-residue sustainable vegetable production systems. These proposed biotechnological solutions are related to the use of the next generation plant biostimulants. Plant biostimulants represent an emerging class of agricultural input, which protect plants against abiotic stress, enhance / benefits nutrients uptake and improve yield quality . The proposed plant biostimulants to be used for an enhanced sustainability of field vegetables grown in a high residue system are including into all classes / subclasses mentioned in the new EU Regulation 1009/2019. The multi-functional Trichoderma strains-based plant biostimulants (a microbial plant biostimulants) will be included into a glycodinameric, chitosan based bioactive (micro)hydrogel formulation. Decoration of microgels with anchor peptides will be used as a (micro)hydrogel tackifier on the plant residues. The bioactive hydrogel is based on an organic plant biostimulants (chitosan), which will be used to generate a biocompatible 3D porous structure, thermo- and pH-responsive and with a hydrophilic – hydrophobic segregation feature. This hydrophilic – hydrophobic segregation (micro)hydrogels will be used for embedding hydrophobic mimetic strigolactones. Propper application technologies of such smart formulated hydrophobic molecules will be developed, to exploit strigolactones both functions, as exo-signals for a better harnessing of beneficial microbiome and as cue for deleterious organisms (e.g. to induce suicidal germination of parasitic plants). The smart formulated bioproducts / agricultural inputs and the agricultural practices intended to exploit their specific features of such bioproducts are an example of biotechnologies for agriculture. The natural strigolactones mimics will be a part of the microbial standardized extract, which we intend to produce from microalgae culture and which is another example of organic plant biostimulant. This microbial standardized extract will include natural strigolactones, polyamines and betaines. Both strigolactones and polyamines are exo- and endo-signals. As exo-signals, both strigolactones and polyamines have been demonstrated to enhance mycorrhizae hyphal branching and root colonization. As endo-signals, both strigolactones and polyamines are involved in plant stress responses. Betaine also supports plant response to stress, especially to drought. Strigolactone mimics used for laboratory screening will be synthetized based on a rational bio-design. The inorganic plant biostimulants are represented by selenium, as zerovalent nano-selenium. A large body of evidence demonstrates that selenium acts as a plant biostimulant. Selenium protects plants against abiotic stress, especially drought, enhances / benefits nutrient uptake and improves edible yield quality. Nanoselenium (zerovalent) particles show a much lower environmental impact and an improved efficiency compared to other selenium species. Application of selenium nanoparticles reduces the risk of accumulation of polyamines in the edible yield. From a food safety point-of-view, accumulation of polyamines in vegetables grown into HV mulch could have some carcinogenic effects, because polyamines were found to support proliferation of various tumor cells.
The project is an interdisciplinary one and address also other key topics as Environmental impact and risk assessment of the modern, new and emerging technologies and products. Safety and environmental impact of the new developed products will be determined by a state-of-art 3R techniques, by Norway partners. The project contributes to the objectives and the priorities of the call. It supports research cooperation between Romania and Norway and consolidate a strategic partnership.
Read more
Better harnessing of Trichoderma biotechnological potential for biorefinery and as plant biostimulants by controlled development and biosynthesis
Call name:
P 4 - Proiecte de Cercetare Exploratorie, 2020
PN-III-P4-ID-PCE-2020-2780
2021
-
2023
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Affiliation:
Project website:
https://icechim.ro/total
Abstract:
Project TOTAL aims to investigate and integrate abiotic modulation and epigenetic control of Trichoderma strains within the context of Trichoderma interactions with biomass and living matter, for better harnessing of Trichoderma biotechnological potential. The specific objectives of the project are: (i) To establish and optimize the combined effects of light and nutrients on expression of proteins acting on plant cell walls and spore formation by Trichoderma strains; (ii) To optimize the deconstruction of plant cell walls by Trichoderma secreted proteins; (iii) To synergize the plant biostimulants effects of Trichoderma chlamydospores. The current approaches targeted the optimization of Trichoderma utilization either in agriculture or in biorefinery. The optimization of culture conditions have been in general focused either on improving sporulation to be used in biopesticides formulations or on the enzyme production for biomass deconstruction. Secondary products have been usually disregarded and discarded. An integrative technology to benefit from both advantages that Trichoderma offers has not been established. We plan to integrate the investigation of the fundamental aspects of Trichoderma development (light-, nutrient- and stress- mediated chlamydospore formation; cell signaling pathways; epigenetic effects) with its growth optimization for the use in both biomass valorization and plant biostimulant formulations.
Read more
Closing the bioeconomy value chains by manufacturing market demanded innovative bioproducts
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0569
2018
-
2021
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); INSTITUTUL DE CHIMIE MACROMOLECULARA "PETRU PONI" (RO); UNIVERSITATEA "DUNAREA DE JOS" (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU STIINTE BIOLOGICE (RO); UNIVERSITATEA AUREL VLAICU ARAD (RO)
Affiliation:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO)
Project website:
http://icechim-rezultate.ro/proiect.php?id=51&lang=ro
Abstract:
Agriculture and food industry in Romania generates large amounts of co/by-products, which are not used and turn into wastes, with negative impacts. The approach of the project PRO-SPER is to develop integrated processes, flexible and interconnected, to transform a number of agro-food by-products in bio-products, with market demand. This approach facilitates the achievement of project goals, complex-coordination and linking of the research organizations that are members of the Consortium, INCDCP-ICMPP, UDJ, ICECHIM, INCDSB and UAV, for improving their institutional performance in the field of nano-and bio-technologies of their application into bioeconomy.
The overall objective of the project PRO-SPER is to increase the impact of research and development activities and innovation of the RDI institutions, by developing and harnessing innovative technological solutions for bio-nano-processing of several by-products from the bioeconomy value chains, for recovering and/or formation of value-added components and their use in order to obtain products with high added value.
Expected results through the implementation of the project (21 new jobs, 23 national patent applications and international patent applications 6 EPO/WIPO; 10 technologies/new products resulting from the project, at a level of technological maturity to enable taking over by the operators, 5 services research and technological research services 10 cheques, 10 experiments cheques services
80 internship of young researchers from and within partner institutions, 50 visits for developing new techniques for working jointly in the Consortium, 30 training internships for new employees, 28scientific papers, 1 joint program CDI, in line with the development plan of institutional partners) have a significant impact on the capacity-building of the partners in the Consortium.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.4627, O: 157]