Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
2010
Madalina
Nicolescu
PhD
-
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Researcher
Dr. Madalina Nicolescu is a Researcher of the Institute of Physical Chemistry - Ilie Murgulescu, Bucharest, Romanian Academy. She earned her PhD in Chemistry in 2010. Her area of expertise includes optical and electrical characterization of thin films and interfacial layers.She has published over 30peer-reviewed papers with an H-index of 12.
19
years
Web of Science ResearcherID:
DKS-2120-2022
Personal public profile link.
Curriculum Vitae (24/04/2025)
Expertise & keywords
Spectroscopic ellipsometry
Electrical properties
Dielectric and piezoelectric measurements
Spectroscopic ellipsometry
Electrical properties
Dielectric and piezoelectric measurements
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Continuous flow demonstrator and technology with VIS/solar-active photocatalyst on spherical bead substrates for advanced wastewater treatment
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2021-2928
2022
-
2024
Role in this project:
Coordinating institution:
UNIVERSITATEA TRANSILVANIA BRASOV
Project partners:
UNIVERSITATEA TRANSILVANIA BRASOV (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Affiliation:
Project website:
http://photocatbead.unitbv.ro
Abstract:
The project’s scope is to design, develop and validate at laboratory level a continuous flow, efficient technology, based on VIS/solar-active TiO2-GO and TiO2-gC3N4 composite photocatalytic (PC) beads, in suspension, for the advanced wastewater treatment with low organic pollutants load targeting the water reuse.
The demonstration technology has 3 key components: (a) the VIS/solar-active composite thin films based on TiO2 - 2D carbon derivatives with controlled properties, deposited on glass or silica-gel beads with a diameter of 3–5mm (TRL start=2, TRL end=3) integrated in (b) a continuous flow, tubular photocatalytic reactor (1–3 L) (TRL start=2, TRL end=3) to develop (c) the laboratory demonstration technology when the PC beads will be tested in the photocatalytic reactor for the advanced wastewater treatment, for methylene blue and imidacloprid (10 ppm) removal, under simulated (300-1000 W/m2) or natural solar radiation (TRL start=2, TRL end=4). The PC beads’ stability will be tested in up to 3 photocatalytic consecutive cycles (each: 1h dark + 8h irradiation), monitoring the changes in the structural, morphological, optical and photocatalytic properties of the thin films. A regeneration protocol based on multiple rinsing cycles using deionized water (with or without UV radiation) will also be formulated.
The project’s activities correspond to 3 scientific objectives and 1 support objective, leading to the design and development of the individual components and their integration in the major outcome of this project: the novel technology that will be validated at laboratory level.
The dissemination activities target the scientific community: 3 (submitted) ISI papers, 4 conference presentations; the stakeholders (1 patent proposal and 1 workshop); the general public (the web-site).
Read more
Smart Portable System for VOCs detection
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
ERANET-M.-VOC-DETECT
2019
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); NANOM MEMS SRL (RO); Institute for Technical Physics and Materials Science (MFA), Centre for Energy Research, Hungarian Academy of Sciences (HU)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
https://www.imt.ro/voc-detect
Abstract:
Most human environments are characterised by the presence of a large number of chemical substances which mainly belong to the group of volatile organic compounds (VOC). Numerous studies revealed the toxic and carcinogenic effects of these VOCs which usually can be found in indoor air, but the tools for the detection of VOCs are still not very precise and too expensive.
The project will develop new sensors based on nano MOX and CNT materials for VOC detection, integrated into a smart portable system providing quantitative information about the concentration of Formaldehyde and Benzene in indoor air.
The results will be:
- Technology demonstrator and Smart, portable system prototype and new formaldehyde and benzene sensors;
- Technology for thin sensitive films deposition and integration in the microtechnology steps flow for sensors fabrication on silicon – Demonstration;
- E-Nose system, including sensor array, data processing algorithms and software for VOCs accurate detection.
Read more
Sensors and Integrated Electronic and Photonic Systems for people and Infrastructures Security
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0419
2018
-
2021
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); UNIVERSITATEA PITESTI (RO); Ministerul Apararii Nationale prin Centrul de Cercetare Stiintifica pentru Aparare CBRN si Ecologie (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
http://www.sensis-ict.ro
Abstract:
The Complex Project “Sensors and Integrated Electronic and Photonic Systems for people and Infrastructures Security” aims to develop new sensors, new integrated electronic and photonic systems for detection of explosives used in terrorist attacks or accidentally released in military bases or industrial sites.
The Complex Project is developed through four distinct projects, called “components” which are converging to the Project goals by detection of explosive substances and increasing the security of people and infrastructures, as follows:
1) Design and development of a portable microsystem, based on TF BAR sensors arrays, for multiple detection of explosives (TATP, HMTD, TNT, RDX, NG, EGDN) used in terrorist attacks; 2) SiC-based hydrocarbons sensors for measuring the hydrogen and hydrocarbons in hostile industrial environments; 3) Infrared sensors for dangerous gases detection, such as explosive gases (methane) or pollutants (carbon dioxide / monoxide); 4) Design and development of a piezoelectric energy micro-harvester, able to generate electric power in the 100µW range, used for powering up sensors and portable microsystems used in explosive gases and substances detection.
The complex project description includes the novelty elements, detailed activities description, the working procedures within the consortium, expected results and deliverables. The deliverables has an average TRL 5, which means all four component projects will have a high technological level and the result’s maturity will reach at least successful laboratory testing.
The project will deliver the sensors and integrated systems along with the energy micro-harvester as physical objects and technologies, functional and laboratory- and real conditions tested, scientific papers and patents. The project’s high impact on the participants and also the social impact are detailed.
Read more
Sustainable autonomous system for nitrites/nitrates and heavy metals monitoring of natural water sources
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
M-ERA.NET-WaterSofe
2016
-
2018
Role in this project:
Coordinating institution:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Project partners:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); NANOM MEMS SRL (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); UNIVERSITATEA TRANSILVANIA BRASOV (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
http://www.icf.ro/pr_2016/WaterSafe/index.html
Abstract:
The project sets to develop a new energy autonomous system based on (photo)electrochemical sensors for detection of different ionic species in natural water sources and ultra-thin solar cells (UTSC). It focuses on three directions: high efficiency, new materials in solar energy harvesting and fabrication of small UTSC and the power stabilizing device able to supply the needed voltage to the sensors and electronic module; new microsensors for detection of nitrites/nitrates and heavy metals in water; low cost autonomous energy system integration and fabrication.
The harvester will include a UTSC, a dedicated storage and a power stabilizing device. SnO2, TiO2, ZnO materials will be optimised for sensors and (TiO2, ZnO,CuxS)or(CZTS, CuxS, TiO2) for the solar cells. Bacterial flagellar filaments will be investigated and engineered as sensitive biolayer for heavy metal detection. The project will provide a technology demonstrator and water monitoring system prototype.
Read more
Piezoelectric MEMS for efficient energy harvesting
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
ERA-M-PiezoMEMS
2015
-
2018
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); ROMELGEN S.R.L. (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
http://www.imt.ro/piezomems
Abstract:
The project proposes to develop a new piezoelectric harvester based on micro-electro-mechanical system (MEMS) devices and piezoelectric materials together with storage module and power circuitry. It focuses on small-scale power energy harvesting techniques (1-100µW) for autonomous operation of portable or embedded micro devices and systems. The harvester will include a MEMS device based on 10÷20 micrometric structures, covered with a piezoelectric thin film (ZnO/doped ZnO or KNN), connected together for increasing the power density.
Expected results: New technology and Prototype of a piezoMEMS harvester for powering portable biomedical devices or sensor networks, tested in real environment applications. Potential benefits: Green and cheap energy, reduction of CO2 emissions, improving quality of life. The project will impact the field of MEMS and piezomaterials manufacture, portable medical devices, sensors networks and green energy production.
Read more
Electronic Nose for detection of low concentration pollutant and explosive gases
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1487
2014
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Project partners:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); ROMELGEN S.R.L. (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
http://www.icf.ro/pr_2014/PN-II-PT-PCCA-2013-4-1487/
Abstract:
The aim of the project is the realization of an „electronic nose” for detection of very low concentration of pollutants and explosive gases. To obtain such a device, a microsensor array will be fabricated using integrated and miniaturized silicon based microtransducers. The microtransducers containing a microheater and interdigitated electrodes on top are built on a thin Si3N4 membrane suspended on four arms. The microsensor array will contain metallic-oxide based sensors, namely TiO2, ZnO and HfO2 nanostructured materials with special morphologies, with large surface areas, patterned on top of the interdigitated electrodes. These are one order of magnitude more sensitive than „normal materials” and able to detect very small quantity of gases. The novelty of the project consists: a) the significant improvement of properties of the proposed materials by controlling the nanometer-level architecture oxide (nanostructures) by forming ordered nanoporous structures, nanorods, nanotubes, spheres, and thin films with controlled morphology and porosity; b) new technology for microsensors fabrication with very low power consumption; c) using HfO2 nanotubes obtained by chemical methods for sensor application. The microsensor array based on TiO2, ZnO and HfO2 nanostructured materials will be tested as sensors for 7 gases: H2, CO, propane, NOx, NH3, CH4, H2S. The microsensor arrays will be encapsulated and coupled with an electronic module which will allow interfacing with a computer. A laboratory platform and a mobile apparatus for gas detection will be elaborated and tested especially for interior microclimates. The use of the microsensors together with information technology will improve these microclimates and will reduce their energy consumption.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.8436, O: 200]