Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
2018
Mrs.
Maria Cristina
Vladut
Scientific Researcher
-
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Researcher
Personal public profile link.
Curriculum Vitae (27/01/2024)
Expertise & keywords
Chemical synthesis
Preparation and characterization of thin films
Nanopowders (ZnO, CuO, CeO2, TiO2, etc.)
Material characterization
Sensor Applications
Projects
Publications & Patents
Entrepreneurship
Reviewer section
Transfer of innovative co-crystallization technologies for the development of nutraceutical functional products
Call name:
P 2 - SP 2.1 - Proiect de transfer la operatorul economic
PN-III-P2-2.1-PTE-2021-0393
2022
-
2024
Role in this project:
Coordinating institution:
TERACRYSTAL SRL
Project partners:
TERACRYSTAL SRL (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Affiliation:
Project website:
https://teracrystal.com/research/
Abstract:
The project proposal "Transfer of innovative co-crystallization technologies for the development of nutraceutical functional products -INOCRYSTAL", aims to (i) validating a functional model for the preparation of nutraceutical functional products obtained by (ii) innovative technologies based on the co-crystallization of resveratrol and piperazine and (iii) strengthening TeraCrystal's innovation capacity in obtaining new products with nutraceutical properties for the livestock sector, both for the domestic and foreign markets. This project proposal capitalizes on the results of its own research, obtained through the collaboration between the two partners (TeraCrystal srl and the Institute of Physical Chemistry of the Romanian Academy) and materialized by obtaining an international patent (US 20210032210A1). Based on the results obtained at laboratory scale, a functional model (TRL5) is proposed, which involves cocrystals obtained by the homogenization/milling technique of resveratrol and piperazine in the presence of ethyl alcohol. A discontinuous technological process is used with 2 kg rods. It can be estimated that the product thus obtained possesses nutraceutical functions and generates a profit of 30.000 euro/month for a 100kg production. It is also proposed to patent the technology for obtaining the nutraceutical product and to disseminate the results by participating in two international conferences and publishing three ISI listed papers.
Read more
Metal-ceramic nanocomposites: next-generation thermal energy storage materials
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2019-1456
2020
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Project partners:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
http://www.icf.ro/pr_2019/TE166_2020.pdf
Abstract:
Currently, the only “green” technology which can replace polluting coal or gas power plants for continuous energy generation is Concentrated Solar Power. This can be coupled with thermal energy storage, typically using molten salts. However these materials have limited operating temperature range, leading to decreased plant efficiency. The MOST project aims to study innovative metal – porous ceramic composites for high temperature energy storage. The materials will act as shape-stabilized phase-change materials (PCM), using both latent and sensible heat storage. Latent heat storage at elevated temperatures improves the heat to electricity conversion efficiency, yielding lower cost per kWh. This approach is based on a concept demonstrated by the team in 2015, involving the maximization of heat storage agent through nanoconfinement into porous oxide matrices. The projects aims at both fundamental studies of metal/semi-metal nanoconfinement into porous inorganic matrices and applicative research aiming to increase the TRL of these materials to at least 2. A laboratory demonstration of gram-scale synthesis of a nanocomposite PCM with at least 50% wt. metal and shape-stability will be carried out.
The project proposes a multidisciplinary approach and aims to consolidate the research team position as a leader in the field of shape-stabilized phase change materials with high storage potential for elevated temperatures (>200 °C), based on nanoconfinement effects. Furthermore, the project activities are aimed at both applicative and fundamental research, increasing the team international visibility and capacity for further collaborative projects with industry and academia, as well as addressing the important challenge of mitigating anthropogenic carbon emissions associated with energy generation.
Read more
Smart Portable System for VOCs detection
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
ERANET-M.-VOC-DETECT
2019
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); NANOM MEMS SRL (RO); Institute for Technical Physics and Materials Science (MFA), Centre for Energy Research, Hungarian Academy of Sciences (HU)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
https://www.imt.ro/voc-detect
Abstract:
Most human environments are characterised by the presence of a large number of chemical substances which mainly belong to the group of volatile organic compounds (VOC). Numerous studies revealed the toxic and carcinogenic effects of these VOCs which usually can be found in indoor air, but the tools for the detection of VOCs are still not very precise and too expensive.
The project will develop new sensors based on nano MOX and CNT materials for VOC detection, integrated into a smart portable system providing quantitative information about the concentration of Formaldehyde and Benzene in indoor air.
The results will be:
- Technology demonstrator and Smart, portable system prototype and new formaldehyde and benzene sensors;
- Technology for thin sensitive films deposition and integration in the microtechnology steps flow for sensors fabrication on silicon – Demonstration;
- E-Nose system, including sensor array, data processing algorithms and software for VOCs accurate detection.
Read more
NEW DIAGNOSIS AND TREATMENT TECHNOLOGIES FOR THE CONSERVATION AND REVITALIZATION OF ARCHAEOLOGICAL COMPONENTS FROM NATIONAL CULTURAL HERITAGE
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0476
2018
-
2021
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA OVIDIUS (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); UNIVERSITATEA "VALAHIA" TARGOVISTE (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
https://icechim.ro/project/tehnologii-noi-de-diagnoza-si-tratament-pentru-conservarea-si-revitalizarea-componentelor-arheologice-ale-patrimoniului-cultural-national-arheocons/
Abstract:
The cultural heritage, as a source of national historical and cultural authenticity, is subjected to deterioration, and for stopping it, some specific procedures are required: cleaning, replacement of old materials and application of new protective materials compatible with the original, and advanced monitoring with sustainability assessment. The consortium of the present project has a unique expertise in Romania, recognised in Europe, through the many published papers, essential projects in Romania (Basarabi Churches, Potlogi Palace, etc.), OSIM and EPO patents, technology transfer, nanomaterials in chemical and biological preservation for cultural heritage objects and objectives; the partner institutions complement each other on a regional basis in the working plan of the whole project.
The overall objective of the project is to develop new materials, new methods and technologies that obey the principles of authenticity, reversibility and value, with a strong impact on immobile cultural heritage objects (fresco, basreliefs and mosaic) and mobile (decorative artefacts from ceramics, glass, metal, bone, objects of art and archaeology). Specific objectives: Developing innovative technologies for protecting national cultural heritage, multidisciplinary cross-sectoral approach, encouraging young professionals as leaders in heritage preservation, exploitation of research results for new jobs, promoting heritage education, professional expertise among all factors involved in the patrimony protection system.
The project, with a high degree of innovation and originality, applies unique technologies in Romania based on new materials compatible with the original materials and develops new techniques practical applied to: Roman Mosaic and Hypogeum Tomb, Constanta, Adamclisi Museum (basreliefs), Constanta County, Corvin’s Castle (Fresca Loggia Mathia) and Archaeology Museum, Hunedoara.
Read more
Sensors and Integrated Electronic and Photonic Systems for people and Infrastructures Security
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0419
2018
-
2021
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU FIZICA LASERILOR, PLASMEI SI RADIATIEI - INFLPR RA (RO); UNIVERSITATEA PITESTI (RO); Ministerul Apararii Nationale prin Centrul de Cercetare Stiintifica pentru Aparare CBRN si Ecologie (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
http://www.sensis-ict.ro
Abstract:
The Complex Project “Sensors and Integrated Electronic and Photonic Systems for people and Infrastructures Security” aims to develop new sensors, new integrated electronic and photonic systems for detection of explosives used in terrorist attacks or accidentally released in military bases or industrial sites.
The Complex Project is developed through four distinct projects, called “components” which are converging to the Project goals by detection of explosive substances and increasing the security of people and infrastructures, as follows:
1) Design and development of a portable microsystem, based on TF BAR sensors arrays, for multiple detection of explosives (TATP, HMTD, TNT, RDX, NG, EGDN) used in terrorist attacks; 2) SiC-based hydrocarbons sensors for measuring the hydrogen and hydrocarbons in hostile industrial environments; 3) Infrared sensors for dangerous gases detection, such as explosive gases (methane) or pollutants (carbon dioxide / monoxide); 4) Design and development of a piezoelectric energy micro-harvester, able to generate electric power in the 100µW range, used for powering up sensors and portable microsystems used in explosive gases and substances detection.
The complex project description includes the novelty elements, detailed activities description, the working procedures within the consortium, expected results and deliverables. The deliverables has an average TRL 5, which means all four component projects will have a high technological level and the result’s maturity will reach at least successful laboratory testing.
The project will deliver the sensors and integrated systems along with the energy micro-harvester as physical objects and technologies, functional and laboratory- and real conditions tested, scientific papers and patents. The project’s high impact on the participants and also the social impact are detailed.
Read more
Nanoconfinement in mesoporous Silica: Towards next generation Energy storage Materials
Call name:
P 1 - SP 1.1 - Proiecte de cercetare pentru stimularea tinerelor echipe independente
PN-III-P1-1.1-TE-2016-0520
2018
-
2020
Role in this project:
Coordinating institution:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Project partners:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
http://www.icf.ro/pr_2018/Contract_95_2018_stema.pdf
Abstract:
The most promising “green” energy generation and storage technology which can economically replace coal and gas at scale is concentrated solar power (CSP). The STEMA project aims to increase the heat storage capacity for this technology with ~50% by developing new solid, shape-stabilized phase change materials through the nanoconfinement of molten salts (such as alkali nitrates and halides) in mesoporous silica matrices. This innovative approach is based on a concept demonstrated by the project team in 2015, involving the maximization of the weight fraction of the active heat storage component through impregnation inside the silica mesopores and in the interparticle spaces, while yielding shape-stability (preservation of macroscopic solid form upon active component phase transition) through capillary forces. The project aims at laboratory demonstration of a novel material with 220J/g heat storage over 100 °C range, an increase of ~50% over state-of-the-art. In contrast with current approaches based only on sensible heat storage, this project will utilize both latent and sensible heat storage mechanisms, increasing the storage capacity and operating temperature range which will yield increased efficiencies and decreased cost per kWh for CSP. Fundamental research pertaining to this promising research field will also be carried out, with the aims of investigating the physico-chemical processes taking place upon molten salt nanoconfinement (adsorption/desorption, crystallization, stability and chemical reactions).
The project proposes a multidisciplinary approach and aims to consolidate the research team position as a leader in the field of shape-stabilized phase change materials with high storage potential, based on nanoconfinement effects. Furthermore, the project activities are aimed at both applicative and fundament research, increasing the team international visibility and capacity for further collaborative projects with industry and academia.
Read more
Sustainable autonomous system for nitrites/nitrates and heavy metals monitoring of natural water sources
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
M-ERA.NET-WaterSofe
2016
-
2018
Role in this project:
Key expert
Coordinating institution:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Project partners:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); NANOM MEMS SRL (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); UNIVERSITATEA TRANSILVANIA BRASOV (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
http://www.icf.ro/pr_2016/WaterSafe/index.html
Abstract:
The project sets to develop a new energy autonomous system based on (photo)electrochemical sensors for detection of different ionic species in natural water sources and ultra-thin solar cells (UTSC). It focuses on three directions: high efficiency, new materials in solar energy harvesting and fabrication of small UTSC and the power stabilizing device able to supply the needed voltage to the sensors and electronic module; new microsensors for detection of nitrites/nitrates and heavy metals in water; low cost autonomous energy system integration and fabrication.
The harvester will include a UTSC, a dedicated storage and a power stabilizing device. SnO2, TiO2, ZnO materials will be optimised for sensors and (TiO2, ZnO,CuxS)or(CZTS, CuxS, TiO2) for the solar cells. Bacterial flagellar filaments will be investigated and engineered as sensitive biolayer for heavy metal detection. The project will provide a technology demonstrator and water monitoring system prototype.
Read more
Piezoelectric MEMS for efficient energy harvesting
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET
ERA-M-PiezoMEMS
2015
-
2018
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD
Project partners:
INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); ROMELGEN S.R.L. (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
http://www.imt.ro/piezomems
Abstract:
The project proposes to develop a new piezoelectric harvester based on micro-electro-mechanical system (MEMS) devices and piezoelectric materials together with storage module and power circuitry. It focuses on small-scale power energy harvesting techniques (1-100µW) for autonomous operation of portable or embedded micro devices and systems. The harvester will include a MEMS device based on 10÷20 micrometric structures, covered with a piezoelectric thin film (ZnO/doped ZnO or KNN), connected together for increasing the power density.
Expected results: New technology and Prototype of a piezoMEMS harvester for powering portable biomedical devices or sensor networks, tested in real environment applications. Potential benefits: Green and cheap energy, reduction of CO2 emissions, improving quality of life. The project will impact the field of MEMS and piezomaterials manufacture, portable medical devices, sensors networks and green energy production.
Read more
Electronic Nose for detection of low concentration pollutant and explosive gases
Call name:
Joint Applied Research Projects - PCCA 2013 - call
PN-II-PT-PCCA-2013-4-1487
2014
-
2017
Role in this project:
Coordinating institution:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Project partners:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); INSTITUTUL NATIONAL DE CERCETARE- DEZVOLTARE PENTRU MICROTEHNOLOGIE - IMT BUCURESTI INCD (RO); ROMELGEN S.R.L. (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
http://www.icf.ro/pr_2014/PN-II-PT-PCCA-2013-4-1487/
Abstract:
The aim of the project is the realization of an „electronic nose” for detection of very low concentration of pollutants and explosive gases. To obtain such a device, a microsensor array will be fabricated using integrated and miniaturized silicon based microtransducers. The microtransducers containing a microheater and interdigitated electrodes on top are built on a thin Si3N4 membrane suspended on four arms. The microsensor array will contain metallic-oxide based sensors, namely TiO2, ZnO and HfO2 nanostructured materials with special morphologies, with large surface areas, patterned on top of the interdigitated electrodes. These are one order of magnitude more sensitive than „normal materials” and able to detect very small quantity of gases. The novelty of the project consists: a) the significant improvement of properties of the proposed materials by controlling the nanometer-level architecture oxide (nanostructures) by forming ordered nanoporous structures, nanorods, nanotubes, spheres, and thin films with controlled morphology and porosity; b) new technology for microsensors fabrication with very low power consumption; c) using HfO2 nanotubes obtained by chemical methods for sensor application. The microsensor array based on TiO2, ZnO and HfO2 nanostructured materials will be tested as sensors for 7 gases: H2, CO, propane, NOx, NH3, CH4, H2S. The microsensor arrays will be encapsulated and coupled with an electronic module which will allow interfacing with a computer. A laboratory platform and a mobile apparatus for gas detection will be elaborated and tested especially for interior microclimates. The use of the microsensors together with information technology will improve these microclimates and will reduce their energy consumption.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.9168, O: 239]