Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
Adrian Roberto
Oprea
-
DELTAROM SRL
Technician
Personal public profile link.
Expertise & keywords
Biochemical Technician
vaccines
culture media preparation
Projects
Publications & Patents
Entrepreneurship
Reviewer section
New textiles for parietal defects
Call name:
P 3 - SP 3.2 - Proiecte ERA.NET - COFUND
COFUND-ERANET MANUNET III-PariTex
2019
-
2021
Role in this project:
Coordinating institution:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU TEXTILE SI PIELARIE - INCDTP BUCURESTI
Project partners:
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU TEXTILE SI PIELARIE - INCDTP BUCURESTI (RO); SANIMED INTERNATIONAL IMPEX S.R.L. (RO)
Affiliation:
SANIMED INTERNATIONAL IMPEX S.R.L. (RO)
Project website:
http://www.paritex.ro
Abstract:
The role of medical devices is essential to the healthcare of citizens. The diversity and innovativeness of this sector contributes significantly to enhancing the safety, quality and efficacy of healthcare in the EU. The challenges related to R&D, emerging technologies and the green economy, as well as issues related to the EU’s trade and regulatory cooperation globally have became more intensive in recent years. SMEs in particular face challenges in this regard. The medical devices sector faces many challenges at national, European and international level, which may have an impact on their innovation capacity and overall competitiveness: Public Health Systems, Finding the balance between patient’s needs and financial sustainability, Competitiveness and innovation. The medical devices with high added value made from resorbable and nonresorbable biopolimers, processed by modern technology (knitting and electrospinning) with linear and spatial structure, functionalized with active agents will be obtained in PariTex project will be a contribution of R&D activity to give an answer for sustainable medical textile device sector. The PariTex project will develop new textiles materials for healing of the parietal abdominal defects, based fibers/ yarns made of nonabsorbable and resorbable polymers (biopolymers) obtained by classical and unconventional (electrospinning) technologies. Knitted and nonwoven fabrics characterized by mass, thickness, porosity,density, dimensions etc. are functionalized by incorporating or coating with substances that have the goal of: reducing adherence to human tissue, reducing the risk of infection, monitoring healing time by using controlled release systems based on natural polymers, reducing abdominal discomfort and associated pain. Will be assessed the level of biological performance, by the test of the mutagenic potential by using the micronucleus test on the hematogenic marrow of mice to determine the sensitizing potential, acute local tolerance, cytotoxicity and subacute toxicity.
The project will contribute to the initiation and consolidation of a value chain for the realization of functional textile structures based on partners' competencies, but also by attracting clusters of textiles and medicine for the application of the results.
Read more
Composite hydrogels based on inorganic nanoparticles and collagen with prolonged antimicrobial activity for the prevention of wound infections
Call name:
P 2 - SP 2.1 - Proiect de transfer la operatorul economic
PN-III-P2-2.1-PTE-2016-0177
2016
-
2018
Role in this project:
Coordinating institution:
SANIMED INTERNATIONAL IMPEX S.R.L.
Project partners:
SANIMED INTERNATIONAL IMPEX S.R.L. (RO); UNIVERSITATEA BUCURESTI (RO); UNIVERSITATEA POLITEHNICA DIN BUCURESTI (RO); INSTITUTUL DE VIRUSOLOGIE "STEFAN S.NICOLAU" (RO)
Affiliation:
SANIMED INTERNATIONAL IMPEX S.R.L. (RO)
Project website:
http://nanocolagel.sanimed.ro/
Abstract:
Chronic wounds represent a good niche for biofilm development because the impaired immune response promotes infection susceptibility whilst necrotic tissue and debris favor bacterial attachment. Collagen hydrogels represent one of the most efficient treatments in case of both chronic and acute wounds due to their ability to maintain optimal humidity and aeration parameters. Currently, at a national level there is no production of collagen hydrogels aimed for the treatment of chronic wounds, hence these types of products are being imported. In this context, the present project proposal aims to design and obtain new types of multifunctional collagen hydrogels harboring antimicrobial properties in order to favor the healing process of chronic wounds. As a novelty element in comparison to products currently available on the international market, we will design and produce collagen hydrogels containing nanoparticles. Thus, Sanimed International Impex S.R.L will develop a simple and rapid technology to obtain hydrogels functionalized with metalic and oxidic nanoparticles (collagen hydrogels with Ag nanoparticles, collagen hydrogels with ZnO hydrogels and collagen hydrogels with SiO2@ZnO nanoparticles). The novel hydrogels will be tested for their antimicrobial and antibiofilm properties using in vitro and in vivo methods and also for the host response after hydrogel treatment on wounded cells and in vivo lesion murine models, for achieving market preparation.
Read more
Technology and equipment for producing collagen-based nanofibrillary structures for resorbable wound dressings
Call name:
P 2 - SP 2.1 - Proiect de transfer la operatorul economic
PN-III-P2-2.1-PTE-2016-0174
2016
-
2018
Role in this project:
Coordinating institution:
SANIMED INTERNATIONAL IMPEX S.R.L.
Project partners:
SANIMED INTERNATIONAL IMPEX S.R.L. (RO); INSTITUTUL NATIONAL DE CERCETARE - DEZVOLTARE PENTRU FIZICA MATERIALELOR BUCURESTI RA (RO)
Affiliation:
SANIMED INTERNATIONAL IMPEX S.R.L. (RO)
Project website:
http://nano-ecol.sanimed.ro
Abstract:
The nano-ECol project proposal aims to develop an innovative technology and to implement a demonstrative prototype at the Technology Readiness Level TRL5, for the production of micro- and nano-fibrillar substrata usable as absorbable dressings for wounds and burns. The micro- and nano-fibers will be obtained by electrospinning, starting from colloidal solutions of atelocollagen currently manufactured at S.C. Sanimed International Impex S.R.L. In this respect, the project aims at shifting/promoting the INFIM SPIN 1.0 prototype, developed through a previous project by the National Institute of Materials Physics (INCDFM), and preliminary tested for its atelocollagen electrospinning capacity, from the TRL4 to the TRL5.
The main technological challenges faced by the nano-Ecol project are: (i) preserving atelocollagen macromolecule in a quasi-native state, (ii) providing the products reproducibility, (iii) producing substrates with an area of tens of square dm and thickness of 3 ... 12 mm, (iv) providing a prototype able to work at micropilot scale, with at demand-formulated electrospun compositions, (v) providing rapid structural and dimensional prototyping, (vi) scaling-up the prototype and related technology to industrial level.
The project will benefit from the facilities and logistics of five research centers, of which two belong to Sanimed, and three to INCDFM. Services and facilities provided by all mentioned centers are detailed on the ERRIS platform.
The Sanimed co-funding represents 67.63% of the sum allocated to the company from the public budget, i.e. 25.27% of total buget, and 39.04% of the total payroll.
The expected outcomes of the project meet the Sanimed interest in expanding the range of products and addressability, by manufacturing resorbable dressings with tailored shape, structure and density, obtained from compositions formulated at physician’s request, in order to satisfy specific pacient needs.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.6065, O: 143]