Log In
Sign Up
Romania
Citizenship:
Ph.D. degree award:
Simona
Petrescu
-
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Researcher | Teaching staff
Personal public profile link.
Expertise & keywords
Glass
Graphene
Parafine
Phase change materials
Differential scanning calorimetry
Raman spectroscopy
Electron microscopy
Advanced materials (oxides, alloys, composites, nanoparticles, microparticles)
Molten salts
Thermal conductivity
Density
Projects
Publications & Patents
Entrepreneurship
Reviewer section
One–Pot Catalytic Conversion of Cellulose into Platform Molecules: Lactic Acid
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2021-4171
2022
-
2024
Role in this project:
Coordinating institution:
UNIVERSITATEA NAŢIONALĂ DE ŞTIINŢĂ ŞI TEHNOLOGIE POLITEHNICA BUCUREŞTI
Project partners:
UNIVERSITATEA NAŢIONALĂ DE ŞTIINŢĂ ŞI TEHNOLOGIE POLITEHNICA BUCUREŞTI (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Affiliation:
Project website:
https://celmollac.wordpress.com/
Abstract:
Lactic acid(LA) has attracted a significantly attention of the researchers due to its wide application in food processing and preservation, pharmaceutical and cosmetics industries and mainly in the synthesis of the polylactic acid. The production of LA in the presence of the heterogeneous acid catalysts attracted the attention of researchers because they are environmentally more sustainable according to the principles of green chemistry. Taking into account the previous studies published, the water-tolerant nature of niobium(V) Lewis acid sites, the strong metal support interaction properties of titanium oxide with transition metals, the existence of Lewis and Brønsted acid sites on the surface of niobium oxide as well as the catalytic activity of titanosilicates in the production of lactic acid derivatives from sugars we propose in this project to validate the process for the synthesis of Nb-based catalysts for the first time to the best of our knowledge, such as niobium doped titanium oxide prepared by solution combustion synthesis, Ti-silicalite-1 with MFI framework and bimodal pore systems (micro-/mesoporosity) supported niobia and activated carbon (obtained from spent ground coffee) supported titanium and niobium oxides and to develop also an experimental model for one-pot conversion of cellulose into lactic acid over Nb-based catalysts,aforementioned, at laboratory scale.
The prepared materials will be exhaustively characterized by using different several techniques such as Pyridine-FTIR, NH3- TPD, XRD, BET, XPS, SEM-EDX, TEM, TG/DTA with the aim to establish a physico-chemical characteristics - catalytic performances correlation in the synthesis of LA from cellulose. Parameters such as: the effect of the amount of catalysts tested, reaction time, reaction temperature will be explored in order to optimize the cellulose conversion to LA.
Read more
Transfer of innovative co-crystallization technologies for the development of nutraceutical functional products
Call name:
P 2 - SP 2.1 - Proiect de transfer la operatorul economic
PN-III-P2-2.1-PTE-2021-0393
2022
-
2024
Role in this project:
Coordinating institution:
TERACRYSTAL SRL
Project partners:
TERACRYSTAL SRL (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Affiliation:
Project website:
https://teracrystal.com/research/
Abstract:
The project proposal "Transfer of innovative co-crystallization technologies for the development of nutraceutical functional products -INOCRYSTAL", aims to (i) validating a functional model for the preparation of nutraceutical functional products obtained by (ii) innovative technologies based on the co-crystallization of resveratrol and piperazine and (iii) strengthening TeraCrystal's innovation capacity in obtaining new products with nutraceutical properties for the livestock sector, both for the domestic and foreign markets. This project proposal capitalizes on the results of its own research, obtained through the collaboration between the two partners (TeraCrystal srl and the Institute of Physical Chemistry of the Romanian Academy) and materialized by obtaining an international patent (US 20210032210A1). Based on the results obtained at laboratory scale, a functional model (TRL5) is proposed, which involves cocrystals obtained by the homogenization/milling technique of resveratrol and piperazine in the presence of ethyl alcohol. A discontinuous technological process is used with 2 kg rods. It can be estimated that the product thus obtained possesses nutraceutical functions and generates a profit of 30.000 euro/month for a 100kg production. It is also proposed to patent the technology for obtaining the nutraceutical product and to disseminate the results by participating in two international conferences and publishing three ISI listed papers.
Read more
Functionalized mesoporous bioglass based 3D scaffolds for hard tissue regeneration
Call name:
P 2 - SP 2.1 - Proiect experimental - demonstrativ
PN-III-P2-2.1-PED-2019-0598
2020
-
2022
Role in this project:
Coordinating institution:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU
Project partners:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); INSTITUTUL NATIONAL DE CERCETARE DEZVOLTARE PENTRU STIINTE BIOLOGICE (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
http://www.icf.ro/pr_2019/BIOSCAFTIS/index.html
Abstract:
The project proposal “Functionalized mesoporous bioglass based 3D scaffolds for hard tissue regeneration“, aims to improve the well-being of people by treating them with new biomaterials. The objective of the project is to restore and improve the function of hard tissue by using functional bioactive scaffolds. These scaffolds will provide good mechanical properties in a suitable environment for tissue regeneration and repair. Sodium free mesoporous bioglasses (MBGs) doped with cerium will be used for scaffold manufacture using a combination of structure-directing agents and a polymer foam replication method. The BIOSCAFTIS project is based on our early results demonstrating that MBGs doped with cerium have good bioactivity and biocompatibility properties. In order to improve the growth and remodelling of bone tissue the surface of the scaffold will be functionalized with vitamin D3. The properties of the scaffolds e.g. bioactivity, mechanical strength, antimicrobial activity and drug delivery profile will be evaluated using adequate characterization techniques. The performance integration of 3D scaffolds to native tissues will be investigated using in vitro experimental models mimicking interaction with osteoblast cells. As a result of the research the project aims to disrupt the area of biomaterials by developing a new class of materials for medical applications.
Read more
NEW DIAGNOSIS AND TREATMENT TECHNOLOGIES FOR THE CONSERVATION AND REVITALIZATION OF ARCHAEOLOGICAL COMPONENTS FROM NATIONAL CULTURAL HERITAGE
Call name:
P 1 - SP 1.2 - Proiecte complexe realizate in consorții CDI
PN-III-P1-1.2-PCCDI-2017-0476
2018
-
2021
Role in this project:
Coordinating institution:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti
Project partners:
Institutul National de Cercetare-Dezvoltare pentru Chimie si Petrochimie - ICECHIM Bucuresti (RO); UNIVERSITATEA OVIDIUS (RO); INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO); UNIVERSITATEA "VALAHIA" TARGOVISTE (RO)
Affiliation:
INSTITUTUL DE CHIMIE FIZICA - ILIE MURGULESCU (RO)
Project website:
https://icechim.ro/project/tehnologii-noi-de-diagnoza-si-tratament-pentru-conservarea-si-revitalizarea-componentelor-arheologice-ale-patrimoniului-cultural-national-arheocons/
Abstract:
The cultural heritage, as a source of national historical and cultural authenticity, is subjected to deterioration, and for stopping it, some specific procedures are required: cleaning, replacement of old materials and application of new protective materials compatible with the original, and advanced monitoring with sustainability assessment. The consortium of the present project has a unique expertise in Romania, recognised in Europe, through the many published papers, essential projects in Romania (Basarabi Churches, Potlogi Palace, etc.), OSIM and EPO patents, technology transfer, nanomaterials in chemical and biological preservation for cultural heritage objects and objectives; the partner institutions complement each other on a regional basis in the working plan of the whole project.
The overall objective of the project is to develop new materials, new methods and technologies that obey the principles of authenticity, reversibility and value, with a strong impact on immobile cultural heritage objects (fresco, basreliefs and mosaic) and mobile (decorative artefacts from ceramics, glass, metal, bone, objects of art and archaeology). Specific objectives: Developing innovative technologies for protecting national cultural heritage, multidisciplinary cross-sectoral approach, encouraging young professionals as leaders in heritage preservation, exploitation of research results for new jobs, promoting heritage education, professional expertise among all factors involved in the patrimony protection system.
The project, with a high degree of innovation and originality, applies unique technologies in Romania based on new materials compatible with the original materials and develops new techniques practical applied to: Roman Mosaic and Hypogeum Tomb, Constanta, Adamclisi Museum (basreliefs), Constanta County, Corvin’s Castle (Fresca Loggia Mathia) and Archaeology Museum, Hunedoara.
Read more
FILE DESCRIPTION
DOCUMENT
List of research grants as project coordinator or partner team leader
Significant R&D projects for enterprises, as project manager
R&D activities in enterprises
Peer-review activity for international programs/projects
[T: 0.7253, O: 174]